
4/20/2019 qnarre/simulation.ipynb at master · quantapix/qnarre · GitHub

https://github.com/quantapix/qnarre/blob/master/docs/simulation.ipynb 2/8

Reductio Ad Absurdum - A Judicial Simulation
"Reductio ad absurdum... is a form of argument that attempts to either disprove a statement by showing it inevitably leads to
a ridiculous, absurd, or impractical conclusion, or to prove one by showing that if it were not true, the result would be absurd
or impossible." - Wikipedia.

The qnarre narrative analyzing software operates on flat text statements represented by lists of sentences. The input evidence of a qnarre
session is the list of all statements to be considered.

These statements are further grouped into an ordered list of docs of pages and paragraphs. The docs are persisted in varied formats in a
hierarchical and rooted directory structure.

When a statement is assigned a credibility in qnarre, it becomes a claim. Credibility is an ordering of all claims defined to intuitively reflect that,
for example, a police report or an allegation made during a trial in Court can be trusted more than a casual verbal opinion overheard on the street.

All docs in qnarre belong to a genre (e.g. letter, motion, affidavit, judgment, etc.) that implicitly weighs all contained claims of the doc with an
inherent, default credibility.

Claims can also be assigned incidental weights that fine-tune their individual credibilities. To model a doc of a specific genre, and containing 100
random claims, we can run the Python code presented below:

In [1]: # Before any of our simulations can be tried, or repeated with
changed parameters, our environment needs to be initialized
import numpy as np
import numpy.random as r
import matplotlib.pyplot as plt

%matplotlib inline

Also, let's create 5 genres represented as their credibilities
genres = (2, 3, 5, 6, 9)

In [2]: # We define a function to conveniently create a new doc
def new_doc(depth):
 genre = genres[r.randint(len(genres))] # random genre from our list
 sigma = r.sample() # standard deviation from a uniform distribution
 claims = r.normal(genre, sigma, depth) # and the list of claims
 return genre, np.absolute(claims)

genre, claims = new_doc(depth=100) # create a doc with 100 claims

Let's plot this, the chart will be randomly different with every run
_, ax = plt.subplots(figsize=(12.8, 4.8))

ax.set_title('doc: genre={}, claims={}'.format(genre, len(claims)))
ax.set_xlabel('claims')
ax.set_ylabel('credibility')

yellow_l = '#ffe700'
yellow_d = '#ffbe00'

x = np.arange(len(claims))
y = claims
ax.plot(x, y, color=yellow_d, label='credibility')
ax.fill_between(x, y, color=yellow_l)
ax.legend()

plt.show()

4/20/2019 qnarre/simulation.ipynb at master · quantapix/qnarre · GitHub

https://github.com/quantapix/qnarre/blob/master/docs/simulation.ipynb 3/8

The code above, and below, relies on randomly synthesizing varied data, or "sampling" from already created lists of values. These processes are
defined in terms of their parameters.

All our simulations are thus driven by our input parameters and/or weights. Parameters and weights are real numbers, or Python floats. Some are
from the interval [0,1] and can thus be directly used as prior probabilities.

Such parameters are:

the number of docs in an input evidence is reflected by its breadth
the number of claims in any specific doc is influenced by its depth.

To model an evidence of random docs with those parameters, we can run:

In [3]: def new_docs(breadth, depth):
 docs, claims = [], []
 for _ in range(breadth): # create each doc of credibilities
 _, cs = new_doc(depth)
 docs.append(cs)
 claims.extend(cs)
 return docs, np.array(claims), breadth, depth

docs, claims, breadth, depth = new_docs(breadth=20, depth=100)

Let's plot this
_, ax = plt.subplots(figsize=(12.8, 4.8))

ax.set_title('docs: breadth={}, depth={}'.format(breadth, depth))
ax.set_xlabel('claims')
ax.set_ylabel('credibility')

light, dark = yellow_l, yellow_d
offset, color = 0, dark
for d in docs:
 x = np.arange(len(d))
 color = light if color is dark else dark
 ax.fill_between(x + offset, d, color=color)
 offset += len(d)

plt.show()

The chosen simple probability distributions for the samples are noted through the choice of functions used. Numpy documentation provides
further details.

More sophisticated, generic and even conjugate probability distributions can be easily plugged in to properly reflect inherent covariance and
contravariance present in the data.

The credibility of a claim can be further enhanced by citing an authority. Such authority "witnessing" a claim will turn the claim into a proof. The
weight of a proof derived from the authority is the enhancing factor of the underlying claim.

The percentage of proofs in an evidence is its proven parameter. To model an evidence witnessed, and thus proven, by authorities, we can run:

4/20/2019 qnarre/simulation.ipynb at master · quantapix/qnarre · GitHub

https://github.com/quantapix/qnarre/blob/master/docs/simulation.ipynb 4/8

In [4]: import math

def new_proofs(proven, weight=2):
 nc = len(claims)
 np = math.floor(nc * proven)
 pis = sorted(r.choice(nc, (np,), replace=False))
 return [(i, max(claims[i], 1) * weight) for i in pis], proven

proofs, proven = new_proofs(proven=0.04)

Let's plot this
_, ax = plt.subplots(figsize=(12.8, 4.8))

ax.set_title('proofs: proven={}'.format(proven))
ax.set_xlabel('claims')
ax.set_ylabel('credibility')

green = '#408e2f'

x = np.arange(len(claims))
y = claims
ax.fill_between(x, y, color=yellow_l, label='credibility')
x, y = zip(*proofs)
ax.vlines(x, 0, y, color=green, label='proof')
ax.legend()

plt.show()

Claims can be further categorized through topics. Grouping together varying topical claims and related proofs improves the understanding of the
overall context in an evidence.

Realities are such contextual claims encapsulating the inherent, or readily and verifiably inferenceable, "common sense" credibilities.

The percentage of realities of all claims in an evidence is generated from its contextual parameter.

A reality, through the thus logically concluded credibility measure called its coherence, adds to the overall certainty of a simulation. We represent
this certainty with a natural value of 1.0 and as an obvious upper bound of our charts and simulated "worlds".

Assuming that normal and balanced ambiguity rules before an evidence is ever considered, we can model how the realities of an evidence drive
the overall understanding from ambiguity to certainty as follows.

Note that ambiguity has become our starting point, the "origin" and baseline with a natural value of 0.0 across the charts:

In [5]: from scipy.ndimage.filters import gaussian_filter1d

def new_reality(claims, proofs, contextual):
 lc = math.ceil(len(claims) * contextual / 10)
 c = np.sum(r.choice(claims, (lc,)))
 lp = math.ceil(len(proofs) * contextual)
 return (c + np.sum(r.choice(proofs, (lp,)))) * contextual

def new_realities(contextual):
 cis = set(range(len(claims)))
 pis, ps = zip(*proofs)
 cis = cis.difference(pis)
 lr = math.floor(len(cis) * contextual)
 ris = sorted(r.choice(list(cis), (lr,), replace=False))

cis = cis difference(ris)

4/20/2019 qnarre/simulation.ipynb at master · quantapix/qnarre · GitHub

https://github.com/quantapix/qnarre/blob/master/docs/simulation.ipynb 5/8

 cis = cis.difference(ris)
 cs = claims[sorted(cis)]
 rs = [claims[i] + new_reality(cs, ps, contextual) for i in ris]
 rs = np.array(rs)
 rmax = np.max(rs)
 rs *= (1 + contextual / 10)
 rs /= rmax
 return [(j, rs[i]) for i, j in enumerate(ris)], rmax, contextual

realities, rmax, contextual = new_realities(contextual=0.1)

Let's plot this
_, ax = plt.subplots(figsize=(12.8, 4.8))

ax.set_title('realities: contextual={}'.format(contextual))
ax.set_xlabel('claims')
ax.set_ylabel('coherence')

blue = 'blue'

x = np.arange(len(claims))
cmax = np.max(claims) * 3
y = claims / cmax
ax.fill_between(x, y, color=yellow_l, label='credibility')
x, y = zip(*proofs)
ax.vlines(x, 0, y / cmax, color=green, label='proof')
x, y = zip(*realities)
y = gaussian_filter1d(y, sigma=10 * contextual)
ax.plot(x, y, color=blue, label='coherence')
And now our bounds for the world of trials:
ax.hlines(1, 0, len(claims), linestyles='dotted', label='certainty')
ax.hlines(0, 0, len(claims), label='ambiguity')
ax.legend()

plt.show()

"Conflict is opportunity": good attorneys find intrinsic contradictions and conflicts in lawsuits and creatively expose the consequences, thus
elevating or plausibly projecting neutral ambiguity to certainty. Judgments are then reproducibly made without further consequences and
attorneys reap the rewards.

Without such conflicts, or the ability to find them, attorneys starve. Less capable yet "ambitious" or malicious attorneys professionally (i.e.
"credibly") create, or plainly fabricate, artificial conflicts.

Such artificial conflicts are thus the fabricated claims that knowingly and purposefully hook into and then graft onto specific perceived realities of
an evidence.

The objective of a [fabricated] conflict is to sow fear, uncertainty and doubt. A conflict, through its intended "credibility", defined hereon as its
fragmentation measure, adds to the overall absurdity, or the level of confusion in the evidence and all its simulations.

So called "high-conflict" attorneys and professionals keenly understand the lucrative potential in this ruthless scheme and advertise their services
as "aggressive", simply meaning maliciously predatorial, as shown in these simulations.

A conflict's fragmentation is thus expressed by, and is proportional to:

its inherent weight measure (e.g. the modelled types of deception, fraud, extortion, etc.)
the strength, the coherence, of its targeted reality (the more absurd something is the more confusion it creates when forcibly taken
seriously).

4/20/2019 qnarre/simulation.ipynb at master · quantapix/qnarre · GitHub

https://github.com/quantapix/qnarre/blob/master/docs/simulation.ipynb 6/8

Furthermore, just as a reality is enhanced by numerically more topical yet still semantically broad claims, a conflict is also emphasized by
necessarily focused and narrow, almost literal, repeats along the famously quoted lines of the ruthless monster:

Repeat a lie often enough and it becomes the truth” - Nazi Joseph Goebbels

The percentage of conflicts of all claims in an evidence is generated from its malicious or malignant characteristic/parameter. We can model how
the conflicts of an evidence fragment the overall reality of a simulation from ambiguity to absurdity as follows:

In [6]: def new_conflict(claims, realities, malignant):
 lc = len(claims) * malignant
 lc = math.floor(lc * r.sample())
 c = np.sum(r.choice(claims, (lc % 13,))) * malignant
 return c * r.choice(realities)

def new_conflicts(malignant):
 cis = set(range(len(claims)))
 pis, _ = zip(*proofs)
 cis = cis.difference(pis)
 ris, rs = zip(*realities)
 cis = cis.difference(ris)
 lf = math.floor(len(cis) * malignant / 10)
 fis = sorted(r.choice(list(cis), (lf,), replace=False))
 cis = cis.difference(fis)
 cs = claims[sorted(cis)]
 fs = [new_conflict(cs, rs, malignant) for i in fis]
 fs = np.array(fs)
 fs /= np.max(fs)
 return [(j, -1.8 * fs[i]) for i, j in enumerate(fis)], malignant

conflicts, malignant = new_conflicts(malignant=0.9)

Let's plot this
_, ax = plt.subplots(figsize=(12.8, 4.8))

ax.set_title('conflicts: malignant={}'.format(malignant))
ax.set_xlabel('claims')
ax.set_ylabel('fragmentation')

red = 'red'

x = np.arange(len(claims))
cmax = np.max(claims) * 3
y = claims / cmax
ax.fill_between(x, y, color=yellow_l, label='credibility')
x, y = zip(*proofs)
ax.vlines(x, 0, y / cmax, color=green, label='proof')
x, y = zip(*realities)
y = gaussian_filter1d(y, sigma=10 * contextual)
ax.plot(x, y, color=blue, label='coherence')
x, y = zip(*conflicts)
ax.vlines(x, 0, y, color=red, label='fragmentation')
ax.hlines(1, 0, len(claims), linestyles='dotted', label='certainty')
ax.hlines(0, 0, len(claims), label='ambiguity')
ax.hlines(-2, 0, len(claims), linestyles='dashed', label='absurdity')
ax.legend()

plt.show()

4/20/2019 qnarre/simulation.ipynb at master · quantapix/qnarre · GitHub

https://github.com/quantapix/qnarre/blob/master/docs/simulation.ipynb 7/8

Note that absurdity is now our lower bound in our charts, and simulations, and it is assigned an artificial value of -2.0. The value was chosen to
reflect the significant antisymmetry between the necessarily coherent reality and the realm of widly fragmented, confused and outright dellusional
"dreams have no limits" absurdity.

As opportunities dwindle in the realm of reality, creatively unbounded, yet also morally unrestricted, select skilled professionals aim to "legally"
profit from the unchartered, and truly vast, "Wild West" of absurdity.

These simulations and software directly target such professionals, with the stated objective of systematically and sustainably profiting
from their current and especially past exploiting escapades into the "Land Absurdity".

Now that some of the used concepts have been defined, we can plot our target domain and its bounds as follows:

In [7]: # Let's plot this
_, ax = plt.subplots(figsize=(12.8, 4.8))

ax.set_title('realms of reality and absurdity')
ax.set_xlabel('claims')
ax.set_ylabel('credibility')

x, y = zip(*realities)
y = gaussian_filter1d(y, sigma=10 * contextual)
ax.plot(x, y, color=blue, label='coherence')
x, y = zip(*conflicts)
ax.vlines(x, 0, y, color=red, label='fragmentation')
ax.hlines(1, 0, len(claims), linestyles='dotted', label='certainty')
ax.hlines(0, 0, len(claims), label='ambiguity')
ax.hlines(-2, 0, len(claims), linestyles='dashed', label='absurdity')
ax.legend()

plt.show()

Judgments are claims meant to forcefully solve conflicts. If the conflicts are inherent, or simply tractable, judgments restore and reinforce reality
thus leading to an obviously sustainable, clear and fair certainty.

In a biased, or prejudiced simulation, reflected by the evidence's prejudiced parameter, the selected conflicts a judgement builds on greatly
influence the credibility and thus the soundness of its own conjecture claim.

Judgments that are not sound (i.e. not coherent with reality) cause confusion and possibly destabilizing, long-term upheaval. A judgment's
turmoil measure is thus expressed by, and is proportional to:

its inherent weight measure (e.g. the modelled types of confusion, bias, fabrication, etc.)
the actual influence, the sum of the fragmentations of all its referenced conflicts (inherent, tractable conflicts are not modelled as they are
factored into the coherence of realities).

The percentage of judgments of all claims in an evidence is generated from its breadth characteristic/parameter. The weights of the judgments are
proportional to the prejudice parameter of the evidence.

We can model how the judgments of an evidence cause consequential turmoil and drive a simulation from ambiguity to absurdity through
confusion as follows:

In [9]: def new_judgment(claims, conflicts, prejudiced):
 lc = len(claims) * prejudiced
 lc = math.floor(lc * r.sample())
 c = np.sum(r.choice(conflicts, (lc % 13,))) * prejudiced
 return abs(c)

4/20/2019 qnarre/simulation.ipynb at master · quantapix/qnarre · GitHub

https://github.com/quantapix/qnarre/blob/master/docs/simulation.ipynb 8/8

def new_judgments(prejudiced):
 cis = set(range(len(claims)))
 pis, _ = zip(*proofs)
 cis = cis.difference(pis)
 ris, _ = zip(*realities)
 cis = cis.difference(ris)
 fis, fs = zip(*conflicts)
 cis = cis.difference(fis)
 lj = math.floor(len(cis) * prejudiced / 10)
 jis = sorted(r.choice(list(cis), (lj,), replace=False))
 cis = cis.difference(jis)
 cs = claims[sorted(cis)]
 js = [abs(new_judgment(cs, fs, prejudiced)) for i in jis]
 js = np.array(js)
 js /= np.max(js)
 js *= np.absolute(r.normal(scale=prejudiced, size=(len(js))))
 return [(j, 0.75 - 3 * js[i]) for i, j in enumerate(jis)], prejudiced

judgments, prejudiced = new_judgments(prejudiced=0.9)

Let's plot this
_, ax = plt.subplots(figsize=(12.8, 4.8))

ax.set_title('judgments: prejudiced={}'.format(prejudiced))
ax.set_xlabel('claims')
ax.set_ylabel('credibility')

x = np.arange(len(claims))
cmax = np.max(claims) * 3
y = claims / cmax
ax.fill_between(x, y, color=yellow_l, label='credibility')
x, y = zip(*proofs)
ax.vlines(x, 0, y / cmax, color=green, label='proof')
x, y = zip(*realities)
y = gaussian_filter1d(y, sigma=10 * contextual)
ax.plot(x, y, color=blue, label='coherence')
x, y = zip(*conflicts)
ax.vlines(x, 0, y, color='pink', label='fragmentation')
x, y = zip(*judgments)
y = gaussian_filter1d(y, sigma=2)
ax.plot(x, y, color='red', linewidth=10, label='turmoil')
ax.hlines(1, 0, len(claims), linestyles='dotted', label='certainty')
ax.hlines(0, 0, len(claims), label='ambiguity')
ax.hlines(-2, 0, len(claims), linestyles='dashed', label='absurdity')
ax.legend()

plt.show()

